Resolving rates of mutation in the brain using single-neuron genomics

نویسندگان

  • Gilad D Evrony
  • Eunjung Lee
  • Peter J Park
  • Christopher A Walsh
چکیده

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microinfusion of Bupropion Inhibits Putative GABAergic Neuronal Activity of the Ventral Tegmental Area

Introduction: The most common interpretation for the mechanisms of antidepression is the increase of the brain monoamine levels such as dopamine (DA). The increase of DA can reduce depression but it can also decrease the monoamine release because of autoreceptor inhibition. Although bupropion can decrease the dopamine release, there is evidence about stimulatory effects of chronic application o...

متن کامل

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

Screening for FecGH Mutation of Growth Differentiation Factor 9 Gene in Iranian Ghezel Sheep Population

Background Ghezel sheep are highly prolific and one of the local sheep breeds in Iran and Turkey. Growth differentiation factor-9 (GDF9) gene has been found to be essential for growth and differentiation of early ovarian follicles. Novel mutations in GDF9 have been associated with increased ovulation rates and high litter sizes in heterozygous carriers. Therefore, fecundity gene for GDF9 (FecGH...

متن کامل

Morphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study

Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...

متن کامل

Investigation of GDF9 and BMP15 Polymorphisms in Mehraban Sheep to Find the Missenses as Impact on Protein

Utilization of fecundity genes such as GDF9 and BMP15 can help improve reproductive traits in sheep breeding programme. To evaluate effects of missense mutations on protein function, the polymorphisms of GDF9 and BMP15 genes were screened in twelve mehraban sheep using DNA sequencing, followed by protein structure modeling. Six single nucleotide polymorphism (SNPs) known as FecG mutations (G1-G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016